Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 303(Pt 2): 135058, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35642855

RESUMO

Straw will degrade into segment, powder and crystalline cellulose, while the agricultural film will degrade into microplastics (MPs) in farmland soils. The specific surface area of these micro-particles increases and many new functional groups are formed in the degradation process, which can be a good vector of pesticides. To more accurately and truly analyze the risk of main imported substances and their degradation products against pollutants in soil, the adsorption behavior and mechanism of four commonly used pesticides on aged polyethylene microplastics (APE), wheat straw segment (WSS), wheat straw powder (WSP), and straw crystalline cellulose (SCC) were analyzed and compared through batch adsorption experiments and infrared spectrum. The adsorption kinetics of four pesticides on MPs and straw degradation products tended to be pseudo-second-order kinetics; the adsorption isotherms of pesticides on APE and SCC tended to fit the Freundlich model, while on WSP and WSS tended to fit the Langmuir model. The adsorption was a spontaneous endothermic increase process, suggesting that the main adsorption force of pesticides on MPs and straw degradation products was hydrophobic diffusion. The adsorption of pesticides against WSP and WSS still had a certain π-π conjugation and electrostatic interaction. And the adsorption amount on the straw degradation products followed the order of WSP > WSS > APE > SCC, presumably related to the specific surface area and pore volume of the adsorbent. As WSP, WSS could adsorb more pesticides, the straw returning to the field can be used for slow-release of pesticides to reduce the dosage of pesticides.


Assuntos
Praguicidas , Poluentes Químicos da Água , Adsorção , Celulose , Cinética , Microplásticos , Praguicidas/química , Plásticos/química , Pós , Solo , Triticum , Poluentes Químicos da Água/análise
2.
Analyst ; 146(7): 2255-2263, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33599631

RESUMO

Highly effective enrichment of endogenous phosphopeptides from complex biological samples is an essential and crucial theme in the analysis of phosphopeptidomics. Herein, an ordered mesoporous TiO2/C composite (denoted as Ti-MCM) was prepared by the pyrolysis of MIL-125 under a N2 atmosphere. The obtained Ti-MCM possesses a high specific surface area (165 m2 g-1), a uniform pore size (3.75 nm), and a large amount of Ti (46%). By utilizing the selective chelation between Ti-MCM and phosphopeptides, 25 phosphopeptides were detected in α-casein digest after enrichment. The material shows good selectivity even in the presence of 2000-fold excess of interference peptides. It was also used to enrich endogenous phosphopeptides from the complex samples of human serum and saliva and showed a good performance.


Assuntos
Fosfopeptídeos , Titânio , Humanos , Caseínas , Óxidos
3.
Talanta ; 206: 120165, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514902

RESUMO

In proteomics, phosphorylation is an important process for protein post-translational modification (PTM), which greatly improves the diversity of proteomes. The PTM regulates almost all physiological and pathological processes such as signal transduction, cell division, proliferation, differentiation and metabolism. The abnormal expression of protein phosphorylation is also associated with cellular metabolic disorders and a range of diseases. However, in mass spectrometry-based phosphorylated peptideomics studies, phosphorylated peptide signals were inhibited by a high abundance of non-phosphorylated peptides; thus, highly selective enrichment was required. In this study, a newly designed material named Fe3O4@MIL(Fe/Ti) was synthesized using a layer-by-layer self-assembly technique that coats the surface of magnetic oxide nanospheres with bimetallic MOF of iron and titanium. The synergistic synthetic coating of the bimetallic MOF gives the material a large surface area and excellent hydrophilicity, which endow the nanoparticles with excellent phosphopeptide enrichment ability, high selectivity (ß-casein/BSA molar ratio 1:500), a low detection limit (3 fmol), high recovery rate (85%), strong binding capacity, size exclusion ability, and ideal batch-to-batch repeatability. For comparison, we used Fe3O4@MIL(Fe/Ti) and two single-metal MOF materials Fe3O4@MIL-100(Fe) and Fe3O4@MIL-125(Ti), to enrich α-casein in the middle. Thus, the iron-titanium bimetallic MOF can not only enrich all the phosphorylated peptides enriched by Fe3O4@MIL-100(Fe) and Fe3O4@MIL-125(Ti), but can also specifically enrich four phosphorylated peptides. Encouraged by the excellent results of characterization and standard protein enrichment, we used this material to analyze human serum and found that bimetallic materials can effectively enrich all four phosphorylated peptides and exclude high molecular proteins. These experimental results indicate that the novel bimetallic MOF is a good candidate to analyze protein phosphorylation in complex samples.


Assuntos
Nanopartículas de Magnetita/química , Estruturas Metalorgânicas/química , Fosfopeptídeos/sangue , Caseínas/sangue , Humanos , Ferro/química , Limite de Detecção , Saliva/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...